Glass Futures and its members to continue leading the decarbonisation of energy intensive industries

Glass Futures, a disruptive research technology organisation, will continue to find solutions for decarbonising energy intensive industries thanks to £7m funding and £11m for its members from the UK government’s Department for Energy, Security and Net Zero.

The not-for-profit, which opened its new £54m Global Centre of Excellence in St Helens in June, will be involved in three projects to pave the way for the glass and ceramic industries to drastically cut carbon emissions.

Through investigations into 100 per cent hydrogen, low-cost biofuels and electrical boosting, Glass Futures will partner with its members across the ceramic and glass sectors to drive a smoother, faster transition from fossil fuels.

(1) Rapid and Dynamic Electric Boosting of Glass Furnaces (R&D-Electric):
Electric boosting has been identified by British Glass as having the potential to reduce UK CO2 by 56% annually. Innovation could offer up to 200 MWH load balancing capacity to the UK’s electrical grid providing increased energy resilience. This project will model and develop an optimised approach to deploying electric melting by exploring super boosted electric furnaces to hopefully pave the way for 40-50 per cent boost capability for conventional glass furnaces in the future. Thereby, providing a smoother, quicker transition to super-boost hybrid furnaces by 2040.

Glass Futures will install an electric-boost system onto its 30-tonne a day pilot plant in its Centre of Excellence to assess melting efficiency and the impact of convection currents, product quality and seed count (the number of micro-bubbles) within glass. Guardian Glass, a founding of Glass Futures, will run a series of models to understand the most beneficial positioning of electrodes for up to 60 per cent electric-boost. Encirc, another founding member of GLF, is working with us to develop automated techniques and control tools, which are capable of rapidly switching between combustion and electric.

The project will also involve network operators E.ON and National Grid to assess the timescales and costs of upgrading UK grid networks to enable glass plants to transition to electric-hybrid furnaces…Read more